Can you find the chosen number from the grid using the clues?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

56 406 is the product of two consecutive numbers. What are these two numbers?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Number problems at primary level that may require determination.

Number problems at primary level to work on with others.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

How many trains can you make which are the same length as Matt's, using rods that are identical?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

An investigation that gives you the opportunity to make and justify predictions.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you make square numbers by adding two prime numbers together?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

An environment which simulates working with Cuisenaire rods.

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.