Number problems at primary level to work on with others.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you make square numbers by adding two prime numbers together?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Number problems at primary level that may require determination.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Can you find the chosen number from the grid using the clues?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Got It game for an adult and child. How can you play so that you know you will always win?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

An investigation that gives you the opportunity to make and justify predictions.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

56 406 is the product of two consecutive numbers. What are these two numbers?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

How many different sets of numbers with at least four members can you find in the numbers in this box?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you work out some different ways to balance this equation?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

How many trains can you make which are the same length as Matt's, using rods that are identical?

If you have only four weights, where could you place them in order to balance this equaliser?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?