Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Are these statements always true, sometimes true or never true?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Number problems at primary level that may require determination.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This package will help introduce children to, and encourage a deep exploration of, multiples.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you find any perfect numbers? Read this article to find out more...

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

56 406 is the product of two consecutive numbers. What are these two numbers?

Number problems at primary level to work on with others.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

An investigation that gives you the opportunity to make and justify predictions.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you work out some different ways to balance this equation?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Have a go at balancing this equation. Can you find different ways of doing it?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Got It game for an adult and child. How can you play so that you know you will always win?