A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you find any perfect numbers? Read this article to find out more...

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

56 406 is the product of two consecutive numbers. What are these two numbers?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

An investigation that gives you the opportunity to make and justify predictions.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find the chosen number from the grid using the clues?

A game that tests your understanding of remainders.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?