Can you help the children in Mrs Trimmer's class make different shapes out of a loop of string?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

This package will help introduce children to, and encourage a deep exploration of, multiples.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Can you find the chosen number from the grid using the clues?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Got It game for an adult and child. How can you play so that you know you will always win?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

If you have only four weights, where could you place them in order to balance this equaliser?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

A game that tests your understanding of remainders.

Use the interactivities to complete these Venn diagrams.

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Are these statements always true, sometimes true or never true?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Can you complete this jigsaw of the multiplication square?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?