Are these statements always true, sometimes true or never true?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

An investigation that gives you the opportunity to make and justify predictions.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Can you find any perfect numbers? Read this article to find out more...

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This package will help introduce children to, and encourage a deep exploration of, multiples.

Can you find the chosen number from the grid using the clues?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Number problems at primary level that may require determination.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you complete this jigsaw of the multiplication square?

If you have only four weights, where could you place them in order to balance this equaliser?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.