Can you find any perfect numbers? Read this article to find out more...

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

56 406 is the product of two consecutive numbers. What are these two numbers?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Are these statements always true, sometimes true or never true?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Can you find the chosen number from the grid using the clues?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Number problems at primary level that may require determination.

Number problems at primary level to work on with others.

Have a go at balancing this equation. Can you find different ways of doing it?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

If you have only four weights, where could you place them in order to balance this equaliser?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.