This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

56 406 is the product of two consecutive numbers. What are these two numbers?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Got It game for an adult and child. How can you play so that you know you will always win?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

This package will help introduce children to, and encourage a deep exploration of, multiples.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

A game that tests your understanding of remainders.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

How many different sets of numbers with at least four members can you find in the numbers in this box?

A game in which players take it in turns to choose a number. Can you block your opponent?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?