Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you find the chosen number from the grid using the clues?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

An investigation that gives you the opportunity to make and justify predictions.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

This package will help introduce children to, and encourage a deep exploration of, multiples.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

How many trains can you make which are the same length as Matt's, using rods that are identical?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Number problems at primary level that may require determination.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you make square numbers by adding two prime numbers together?

How many different sets of numbers with at least four members can you find in the numbers in this box?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

An environment which simulates working with Cuisenaire rods.