Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Can you complete this jigsaw of the multiplication square?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you find the chosen number from the grid using the clues?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

How many trains can you make which are the same length as Matt's, using rods that are identical?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This package will help introduce children to, and encourage a deep exploration of, multiples.

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Number problems at primary level that may require determination.

Number problems at primary level to work on with others.

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Have a go at balancing this equation. Can you find different ways of doing it?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

If you have only four weights, where could you place them in order to balance this equaliser?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

An environment which simulates working with Cuisenaire rods.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?