On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

This package will help introduce children to, and encourage a deep exploration of, multiples.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Got It game for an adult and child. How can you play so that you know you will always win?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Can you find the chosen number from the grid using the clues?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Number problems at primary level to work on with others.

Number problems at primary level that may require determination.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

If you have only four weights, where could you place them in order to balance this equaliser?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

How many different sets of numbers with at least four members can you find in the numbers in this box?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

An environment which simulates working with Cuisenaire rods.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you make square numbers by adding two prime numbers together?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?