A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

If you have only four weights, where could you place them in order to balance this equaliser?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This package will help introduce children to, and encourage a deep exploration of, multiples.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you complete this jigsaw of the multiplication square?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

56 406 is the product of two consecutive numbers. What are these two numbers?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

A game that tests your understanding of remainders.

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Number problems at primary level that may require determination.

Number problems at primary level to work on with others.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?