What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you complete this jigsaw of the multiplication square?

If you have only four weights, where could you place them in order to balance this equaliser?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you find the chosen number from the grid using the clues?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Have a go at balancing this equation. Can you find different ways of doing it?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

How many trains can you make which are the same length as Matt's, using rods that are identical?

A game that tests your understanding of remainders.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

56 406 is the product of two consecutive numbers. What are these two numbers?

An environment which simulates working with Cuisenaire rods.

A game in which players take it in turns to choose a number. Can you block your opponent?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?