Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Different combinations of the weights available allow you to make different totals. Which totals can you make?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

You need to find the values of the stars before you can apply normal Sudoku rules.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Two sudokus in one. Challenge yourself to make the necessary connections.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

A pair of Sudoku puzzles that together lead to a complete solution.

Four small numbers give the clue to the contents of the four surrounding cells.

Use the differences to find the solution to this Sudoku.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?