Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A pair of Sudoku puzzles that together lead to a complete solution.

Four small numbers give the clue to the contents of the four surrounding cells.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A few extra challenges set by some young NRICH members.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

A Sudoku that uses transformations as supporting clues.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

You need to find the values of the stars before you can apply normal Sudoku rules.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A challenging activity focusing on finding all possible ways of stacking rods.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Two sudokus in one. Challenge yourself to make the necessary connections.