If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

How many different symmetrical shapes can you make by shading triangles or squares?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Use the differences to find the solution to this Sudoku.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Four small numbers give the clue to the contents of the four surrounding cells.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

This challenge extends the Plants investigation so now four or more children are involved.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

A challenging activity focusing on finding all possible ways of stacking rods.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.