Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Use the differences to find the solution to this Sudoku.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

How many different symmetrical shapes can you make by shading triangles or squares?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Two sudokus in one. Challenge yourself to make the necessary connections.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Given the products of adjacent cells, can you complete this Sudoku?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A Sudoku that uses transformations as supporting clues.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

You need to find the values of the stars before you can apply normal Sudoku rules.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.