Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

A Sudoku based on clues that give the differences between adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

A Sudoku with clues given as sums of entries.

This challenge extends the Plants investigation so now four or more children are involved.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Sudoku that uses transformations as supporting clues.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Two sudokus in one. Challenge yourself to make the necessary connections.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Four small numbers give the clue to the contents of the four surrounding cells.

A pair of Sudoku puzzles that together lead to a complete solution.

Find out about Magic Squares in this article written for students. Why are they magic?!

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

You need to find the values of the stars before you can apply normal Sudoku rules.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Use the clues about the shaded areas to help solve this sudoku

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.