Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Use the differences to find the solution to this Sudoku.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Four small numbers give the clue to the contents of the four surrounding cells.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

This Sudoku, based on differences. Using the one clue number can you find the solution?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A pair of Sudoku puzzles that together lead to a complete solution.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Find out about Magic Squares in this article written for students. Why are they magic?!

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Two sudokus in one. Challenge yourself to make the necessary connections.

You need to find the values of the stars before you can apply normal Sudoku rules.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

How many different symmetrical shapes can you make by shading triangles or squares?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

This challenge extends the Plants investigation so now four or more children are involved.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A challenging activity focusing on finding all possible ways of stacking rods.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Use the clues about the shaded areas to help solve this sudoku

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.