Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Given the products of adjacent cells, can you complete this Sudoku?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku that uses transformations as supporting clues.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This Sudoku, based on differences. Using the one clue number can you find the solution?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Given the products of diagonally opposite cells - can you complete this Sudoku?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find out about Magic Squares in this article written for students. Why are they magic?!

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Two sudokus in one. Challenge yourself to make the necessary connections.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A pair of Sudoku puzzles that together lead to a complete solution.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.