A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

This Sudoku, based on differences. Using the one clue number can you find the solution?

A pair of Sudoku puzzles that together lead to a complete solution.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A Sudoku based on clues that give the differences between adjacent cells.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Use the differences to find the solution to this Sudoku.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Given the products of diagonally opposite cells - can you complete this Sudoku?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The clues for this Sudoku are the product of the numbers in adjacent squares.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku that uses transformations as supporting clues.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Two sudokus in one. Challenge yourself to make the necessary connections.

This Sudoku requires you to do some working backwards before working forwards.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

You need to find the values of the stars before you can apply normal Sudoku rules.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Given the products of adjacent cells, can you complete this Sudoku?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?