This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Given the products of adjacent cells, can you complete this Sudoku?

Given the products of diagonally opposite cells - can you complete this Sudoku?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A Sudoku based on clues that give the differences between adjacent cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Two sudokus in one. Challenge yourself to make the necessary connections.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku that uses transformations as supporting clues.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A pair of Sudoku puzzles that together lead to a complete solution.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

How many different symmetrical shapes can you make by shading triangles or squares?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

Use the differences to find the solution to this Sudoku.