Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

How many different symmetrical shapes can you make by shading triangles or squares?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Given the products of adjacent cells, can you complete this Sudoku?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This challenge extends the Plants investigation so now four or more children are involved.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.