The challenge is to find the values of the variables if you are to solve this Sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Use the clues about the shaded areas to help solve this sudoku

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

A Sudoku based on clues that give the differences between adjacent cells.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A pair of Sudoku puzzles that together lead to a complete solution.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This Sudoku, based on differences. Using the one clue number can you find the solution?

You need to find the values of the stars before you can apply normal Sudoku rules.

Find out about Magic Squares in this article written for students. Why are they magic?!

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

A Sudoku with clues given as sums of entries.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A Sudoku that uses transformations as supporting clues.

Solve the equations to identify the clue numbers in this Sudoku problem.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This Sudoku requires you to do some working backwards before working forwards.