An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

How many different symmetrical shapes can you make by shading triangles or squares?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

You need to find the values of the stars before you can apply normal Sudoku rules.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Solve the equations to identify the clue numbers in this Sudoku problem.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A pair of Sudoku puzzles that together lead to a complete solution.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A Sudoku with clues given as sums of entries.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A Sudoku that uses transformations as supporting clues.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Find out about Magic Squares in this article written for students. Why are they magic?!

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Four small numbers give the clue to the contents of the four surrounding cells.