An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

How many different symmetrical shapes can you make by shading triangles or squares?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

You need to find the values of the stars before you can apply normal Sudoku rules.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The clues for this Sudoku are the product of the numbers in adjacent squares.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Solve the equations to identify the clue numbers in this Sudoku problem.

A Sudoku with clues given as sums of entries.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A Sudoku that uses transformations as supporting clues.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the differences to find the solution to this Sudoku.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Four small numbers give the clue to the contents of the four surrounding cells.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one