You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Find the values of the nine letters in the sum: FOOT + BALL = GAME

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Four small numbers give the clue to the contents of the four surrounding cells.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Use the differences to find the solution to this Sudoku.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A pair of Sudoku puzzles that together lead to a complete solution.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Given the products of adjacent cells, can you complete this Sudoku?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the clues about the shaded areas to help solve this sudoku

A Sudoku based on clues that give the differences between adjacent cells.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Solve the equations to identify the clue numbers in this Sudoku problem.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

How many different symmetrical shapes can you make by shading triangles or squares?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .