This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Use the differences to find the solution to this Sudoku.

Four small numbers give the clue to the contents of the four surrounding cells.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A few extra challenges set by some young NRICH members.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A pair of Sudoku puzzles that together lead to a complete solution.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

A challenging activity focusing on finding all possible ways of stacking rods.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Given the products of adjacent cells, can you complete this Sudoku?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?