Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Given the products of adjacent cells, can you complete this Sudoku?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Two sudokus in one. Challenge yourself to make the necessary connections.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This Sudoku, based on differences. Using the one clue number can you find the solution?

A Sudoku that uses transformations as supporting clues.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A pair of Sudoku puzzles that together lead to a complete solution.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Four small numbers give the clue to the contents of the four surrounding cells.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Use the clues about the shaded areas to help solve this sudoku

This Sudoku requires you to do some working backwards before working forwards.

Two sudokus in one. Challenge yourself to make the necessary connections.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

The challenge is to find the values of the variables if you are to solve this Sudoku.