The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku, based on differences. Using the one clue number can you find the solution?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

Find out about Magic Squares in this article written for students. Why are they magic?!

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the differences to find the solution to this Sudoku.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Four small numbers give the clue to the contents of the four surrounding cells.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

You need to find the values of the stars before you can apply normal Sudoku rules.

A pair of Sudoku puzzles that together lead to a complete solution.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?