My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

How many different symmetrical shapes can you make by shading triangles or squares?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Given the products of adjacent cells, can you complete this Sudoku?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

You need to find the values of the stars before you can apply normal Sudoku rules.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Use the differences to find the solution to this Sudoku.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Find out about Magic Squares in this article written for students. Why are they magic?!

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?