Given the products of adjacent cells, can you complete this Sudoku?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

This Sudoku, based on differences. Using the one clue number can you find the solution?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Given the products of diagonally opposite cells - can you complete this Sudoku?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

A Sudoku that uses transformations as supporting clues.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A few extra challenges set by some young NRICH members.

Two sudokus in one. Challenge yourself to make the necessary connections.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A pair of Sudoku puzzles that together lead to a complete solution.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?