Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Given the products of adjacent cells, can you complete this Sudoku?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A challenging activity focusing on finding all possible ways of stacking rods.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A few extra challenges set by some young NRICH members.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Use the differences to find the solution to this Sudoku.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Find out about Magic Squares in this article written for students. Why are they magic?!

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

How many different symmetrical shapes can you make by shading triangles or squares?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This challenge extends the Plants investigation so now four or more children are involved.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?