You need to find the values of the stars before you can apply normal Sudoku rules.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Solve the equations to identify the clue numbers in this Sudoku problem.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

The challenge is to find the values of the variables if you are to solve this Sudoku.

Find out about Magic Squares in this article written for students. Why are they magic?!

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Two sudokus in one. Challenge yourself to make the necessary connections.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

A pair of Sudoku puzzles that together lead to a complete solution.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Four small numbers give the clue to the contents of the four surrounding cells.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A Sudoku that uses transformations as supporting clues.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A Sudoku with clues given as sums of entries.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

This Sudoku requires you to do some working backwards before working forwards.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Use the clues about the shaded areas to help solve this sudoku