Four small numbers give the clue to the contents of the four surrounding cells.

A Sudoku with clues given as sums of entries.

This Sudoku, based on differences. Using the one clue number can you find the solution?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A pair of Sudoku puzzles that together lead to a complete solution.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

You need to find the values of the stars before you can apply normal Sudoku rules.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A Sudoku that uses transformations as supporting clues.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A few extra challenges set by some young NRICH members.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Two sudokus in one. Challenge yourself to make the necessary connections.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Use the clues about the shaded areas to help solve this sudoku

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

A Sudoku based on clues that give the differences between adjacent cells.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

The challenge is to find the values of the variables if you are to solve this Sudoku.