Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A Sudoku that uses transformations as supporting clues.

Two sudokus in one. Challenge yourself to make the necessary connections.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

How many different symmetrical shapes can you make by shading triangles or squares?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Four small numbers give the clue to the contents of the four surrounding cells.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Two sudokus in one. Challenge yourself to make the necessary connections.

A pair of Sudoku puzzles that together lead to a complete solution.

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?