Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A Sudoku that uses transformations as supporting clues.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

How many different symmetrical shapes can you make by shading triangles or squares?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Use the differences to find the solution to this Sudoku.

Four small numbers give the clue to the contents of the four surrounding cells.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Use the clues about the shaded areas to help solve this sudoku