This Sudoku, based on differences. Using the one clue number can you find the solution?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Four small numbers give the clue to the contents of the four surrounding cells.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku based on clues that give the differences between adjacent cells.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Use the differences to find the solution to this Sudoku.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A Sudoku that uses transformations as supporting clues.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Two sudokus in one. Challenge yourself to make the necessary connections.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Solve the equations to identify the clue numbers in this Sudoku problem.

Use the clues about the shaded areas to help solve this sudoku

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A few extra challenges set by some young NRICH members.

A Sudoku with clues given as sums of entries.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

This Sudoku requires you to do some working backwards before working forwards.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.