The challenge is to find the values of the variables if you are to solve this Sudoku.

Solve the equations to identify the clue numbers in this Sudoku problem.

You need to find the values of the stars before you can apply normal Sudoku rules.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

A pair of Sudoku puzzles that together lead to a complete solution.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A Sudoku that uses transformations as supporting clues.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

This Sudoku, based on differences. Using the one clue number can you find the solution?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Use the clues about the shaded areas to help solve this sudoku

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

Use the differences to find the solution to this Sudoku.

Find out about Magic Squares in this article written for students. Why are they magic?!

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A Sudoku based on clues that give the differences between adjacent cells.

This Sudoku requires you to do some working backwards before working forwards.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A Sudoku with clues given as sums of entries.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.