You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A few extra challenges set by some young NRICH members.

A challenging activity focusing on finding all possible ways of stacking rods.

Find out about Magic Squares in this article written for students. Why are they magic?!

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

How many different symmetrical shapes can you make by shading triangles or squares?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Given the products of adjacent cells, can you complete this Sudoku?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You need to find the values of the stars before you can apply normal Sudoku rules.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?