This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Given the products of adjacent cells, can you complete this Sudoku?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A Sudoku that uses transformations as supporting clues.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A pair of Sudoku puzzles that together lead to a complete solution.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Two sudokus in one. Challenge yourself to make the necessary connections.

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.