Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Two sudokus in one. Challenge yourself to make the necessary connections.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A Sudoku that uses transformations as supporting clues.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A pair of Sudoku puzzles that together lead to a complete solution.

A Sudoku based on clues that give the differences between adjacent cells.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Two sudokus in one. Challenge yourself to make the necessary connections.

This Sudoku requires you to do some working backwards before working forwards.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Use the clues about the shaded areas to help solve this sudoku

A Sudoku with clues given as sums of entries.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

How many different symmetrical shapes can you make by shading triangles or squares?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.