Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A pair of Sudoku puzzles that together lead to a complete solution.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

You need to find the values of the stars before you can apply normal Sudoku rules.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Four small numbers give the clue to the contents of the four surrounding cells.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A Sudoku that uses transformations as supporting clues.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Two sudokus in one. Challenge yourself to make the necessary connections.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A challenging activity focusing on finding all possible ways of stacking rods.

A Sudoku with clues given as sums of entries.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

The challenge is to find the values of the variables if you are to solve this Sudoku.

This Sudoku requires you to do some working backwards before working forwards.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.