Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Two sudokus in one. Challenge yourself to make the necessary connections.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A Sudoku based on clues that give the differences between adjacent cells.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A Sudoku with clues given as sums of entries.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku that uses transformations as supporting clues.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A pair of Sudoku puzzles that together lead to a complete solution.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Use the differences to find the solution to this Sudoku.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Four small numbers give the clue to the contents of the four surrounding cells.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Find out about Magic Squares in this article written for students. Why are they magic?!

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

This Sudoku requires you to do some working backwards before working forwards.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Solve the equations to identify the clue numbers in this Sudoku problem.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.