Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A Sudoku based on clues that give the differences between adjacent cells.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A Sudoku that uses transformations as supporting clues.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku with clues given as sums of entries.

You need to find the values of the stars before you can apply normal Sudoku rules.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

A pair of Sudoku puzzles that together lead to a complete solution.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This Sudoku, based on differences. Using the one clue number can you find the solution?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Use the clues about the shaded areas to help solve this sudoku

Four small numbers give the clue to the contents of the four surrounding cells.

Solve the equations to identify the clue numbers in this Sudoku problem.

Use the differences to find the solution to this Sudoku.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Find out about Magic Squares in this article written for students. Why are they magic?!

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.