We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A pair of Sudoku puzzles that together lead to a complete solution.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

You need to find the values of the stars before you can apply normal Sudoku rules.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Use the differences to find the solution to this Sudoku.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A Sudoku that uses transformations as supporting clues.

Four small numbers give the clue to the contents of the four surrounding cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Find out about Magic Squares in this article written for students. Why are they magic?!

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.