Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The clues for this Sudoku are the product of the numbers in adjacent squares.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

How many different symmetrical shapes can you make by shading triangles or squares?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Given the products of adjacent cells, can you complete this Sudoku?

You need to find the values of the stars before you can apply normal Sudoku rules.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Sudoku that uses transformations as supporting clues.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Two sudokus in one. Challenge yourself to make the necessary connections.

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

A challenging activity focusing on finding all possible ways of stacking rods.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.