Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Solve the equations to identify the clue numbers in this Sudoku problem.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

You need to find the values of the stars before you can apply normal Sudoku rules.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Two sudokus in one. Challenge yourself to make the necessary connections.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A pair of Sudoku puzzles that together lead to a complete solution.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A Sudoku based on clues that give the differences between adjacent cells.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Four small numbers give the clue to the contents of the four surrounding cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

A Sudoku that uses transformations as supporting clues.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Use the clues about the shaded areas to help solve this sudoku

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

A Sudoku with clues given as sums of entries.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

The clues for this Sudoku are the product of the numbers in adjacent squares.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.