The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

You need to find the values of the stars before you can apply normal Sudoku rules.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Solve the equations to identify the clue numbers in this Sudoku problem.

How many different symmetrical shapes can you make by shading triangles or squares?

Four small numbers give the clue to the contents of the four surrounding cells.

Find out about Magic Squares in this article written for students. Why are they magic?!

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A pair of Sudoku puzzles that together lead to a complete solution.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Use the differences to find the solution to this Sudoku.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?