Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

The clues for this Sudoku are the product of the numbers in adjacent squares.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Given the products of diagonally opposite cells - can you complete this Sudoku?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

How many different symmetrical shapes can you make by shading triangles or squares?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A Sudoku that uses transformations as supporting clues.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A few extra challenges set by some young NRICH members.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Use the differences to find the solution to this Sudoku.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of adjacent cells, can you complete this Sudoku?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku based on clues that give the differences between adjacent cells.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?