in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

A Sudoku based on clues that give the differences between adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Four small numbers give the clue to the contents of the four surrounding cells.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

A Sudoku that uses transformations as supporting clues.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A pair of Sudoku puzzles that together lead to a complete solution.

The clues for this Sudoku are the product of the numbers in adjacent squares.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

You need to find the values of the stars before you can apply normal Sudoku rules.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Use the differences to find the solution to this Sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Use the clues about the shaded areas to help solve this sudoku

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Solve the equations to identify the clue numbers in this Sudoku problem.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

A Sudoku with clues given as sums of entries.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This Sudoku requires you to do some working backwards before working forwards.

Two sudokus in one. Challenge yourself to make the necessary connections.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.