A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

A pair of Sudoku puzzles that together lead to a complete solution.

Four small numbers give the clue to the contents of the four surrounding cells.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Use the clues about the shaded areas to help solve this sudoku

A Sudoku based on clues that give the differences between adjacent cells.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A Sudoku that uses transformations as supporting clues.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the differences to find the solution to this Sudoku.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This Sudoku requires you to do some working backwards before working forwards.

Given the products of adjacent cells, can you complete this Sudoku?

This challenge extends the Plants investigation so now four or more children are involved.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?