A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A pair of Sudoku puzzles that together lead to a complete solution.

Four small numbers give the clue to the contents of the four surrounding cells.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A Sudoku based on clues that give the differences between adjacent cells.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A Sudoku that uses transformations as supporting clues.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

The clues for this Sudoku are the product of the numbers in adjacent squares.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Two sudokus in one. Challenge yourself to make the necessary connections.

Given the products of diagonally opposite cells - can you complete this Sudoku?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Use the differences to find the solution to this Sudoku.

Use the clues about the shaded areas to help solve this sudoku

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Given the products of adjacent cells, can you complete this Sudoku?

A Sudoku with clues given as sums of entries.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

This Sudoku, based on differences. Using the one clue number can you find the solution?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This Sudoku requires you to do some working backwards before working forwards.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

You need to find the values of the stars before you can apply normal Sudoku rules.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?