How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

The clues for this Sudoku are the product of the numbers in adjacent squares.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Use the differences to find the solution to this Sudoku.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Given the products of diagonally opposite cells - can you complete this Sudoku?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A few extra challenges set by some young NRICH members.

How many different symmetrical shapes can you make by shading triangles or squares?

This Sudoku, based on differences. Using the one clue number can you find the solution?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

A pair of Sudoku puzzles that together lead to a complete solution.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Given the products of adjacent cells, can you complete this Sudoku?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A Sudoku with clues given as sums of entries.